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J. Phys. A: Math. Gen. 20 (1987) 4097-4108. Printed in the UK 

Dynamical invariance algebra of the Hartmann potential 

M Kibler and P Winternitzt 
lnstitut de Physique Nucleaire (et IN2P3), UniversitC Claude Bernard Lyon-1, 
43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France 

Received 29 December 1986 

Abstract. The 'accidental' degeneracy occurring in the quantum mechanical treatment of 
the ring-shaped potential V =  -vu2r- '  + iqT2cr2(r  sin e)-' is explained by constructing an 
su(2) dynamical invariance algebra. The Schrodinger equation is solved in parabolic 
coordinates written in the framework of the Kustaanheimo-Stiefel transformation and 
the Hamilton-Jacobi equations are solved in ordinary parabolic coordinates. All finite 
trajectories are found to be periodic. 

1. Introduction and preliminaries 

This article is devoted to a group theoretical study of the classical and quantum 
mechanical motion of a particle in the (ring-shaped) three-dimensional potential 

In equation ( l ) ,  6 and r are the polar angle and the radius in spherical coordinates, 
a, and stand for the Bohr radius and the ground state energy of the hydrogen atom, 
respectively. The constants 1 and U are two dimensionless positive parameters, ranging 
from 1 to 10 in applications to quantum chemistry (Hartmann 1972a, b, Hartmann e? 
a1 1976, Schuch 1978, Hartmann and Schuch 1980). The dimensionless positive 
parameter q makes it possible to obtain from (1) the potential energy for a hydrogen-like 
atom with nucleus charge Z e  as a limiting case by taking vu2= Z and q = 0 (Kibler 
and NCgadi 1984a, b, c). (Note that the introduction of the parameter q constitutes 
a convenient alternative to the limiting processes (ur] + 0, a2r] + 1, r ]  + 0 and U + 00) 

described by Schuch (1978).) The potential V,, which is invariant under the point 
symmetry group C,,, was introduced with q = 1 by Hartmann (1972a, b) in view of 
its application to axial symmetric systems like ring-shaped molecules. The Schrodinger 
equation for V ,  was solved in spherical coordinates (Hartmann 1972a, b) and the 
diamagnetic susceptibility of the corresponding ground state was calculated by Hart- 
mann et a1 (1976). The research programme set up by the late Professor Hartmann 
concerning systems subjected to the potential V ,  culminated with the analytical determi- 
nation of the corresponding spin-orbit energy in a quasirelativistic approach (Schuch 
1978, Hartmann and Schuch 1980). 

t Permanent address: Centre de Recherches Mathbmatiques, Universitt de  MontrCal, C P  6128-A, Montreal, 
QuCbec, Canada H3C 3J7. 

0305-4470/87/134097+ 12$02.50 @ 1987 IOP Publishing Ltd 4097 



4098 M Kibler and P Winternitz 

Recently, the Schrodinger equation for the potential V, has been converted, by 
means of the so-called KS transformation (Kustaanheimo and Stiefel 1965), into a 
coupled pair of two-dimensional non-harmonic oscillators with inverse squared poten- 
tial (Kibler and NCgadi 1984a, b, c). Such an approach permits an easy derivation of 
the energy of the bound states for a particle moving in the potential V,. In addition, 
the system of coupled wave equations arising in the KS treatment is close to the 
equations one may obtain by directly solving the Schrodinger equation for the potential 
V, in ordinary parabolic coordinates. Indeed, the treatments via the KS transformation 
and via the use of parabolic coordinates are equivalent as we shall show in this paper. 
In this respect, Gerry (1986) has solved the Schrodinger equation for VI in ‘squared’ 
parabolic coordinates without using the connection between parabolic coordinates and 
KS transformation. Finally, let us mention that a Feynman path integral treatment of 
the Hartmann potential problem has been published very recently (Carpi0 and Inomata 
1986, Sokmen 1986). 

The Hartmann potential ( 1 )  belongs to the class of potentials exhibiting an ‘acciden- 
tal degeneracy’, i.e. a degeneracy of the energy levels not explained by the occurrence 
of an obvious geometrical symmetry. In fact, the corresponding Hamiltonian in au 
(atomicunits: p = e = h = l ,  a o = l ,  eo=-$) 

H = - i A +  V(X) (2) 
with V being V, in au, is invariant under C,,, in particular under rotations about the 
z axis, but not any larger point symmetry group. To understand the degeneracy afforded 
by H in group theoretical terms, it is hence necessary to go beyond point symmetries 
and to invoke a dynamical invariance group, along the lines of the O(4) group for the 
hydrogen atom (Pauli 1926, Klein (see HulthCn 1933), Fock 1935, Bargmann 1936). 
Accidental degeneracy may also be tackled in the framework of groups of canonical 
transformations, see, e.g., Moshinsky et al (1979,  Moshinsky and Quesne (1983) and 
references therein. 

A systematic search for non-relativistic Hamiltonians with dynamical invariance 
groups was initiated several years ago (Winternitz et a1 1966, Makarov et al 1967). 
The emphasis was on two- and three-dimensional Hamiltonians of the form (2) allowing 
integrals of motion quadratic in the momenta. In particular, it was shown (Makarov 
et a1 1967) that in three dimensions a Hamiltonian (2) will commute with a pair 
{XI,  X , }  of second-order mutually commuting operators, viz 

a a  . a 
ax axJ ax 

x, = (b:(x) 7 - + f b ( x )  i+ h , ( x )  

(3 )  

if and only if V ( x )  allows the separation of variables in the Schrodinger equation. All 
separable potentials in the three-dimensional Euclidean space are known (Eisenhart 
1948); all the corresponding pairs {XI,  X 2 }  of operators were found by Makarov et a1 
(1967). 

Accidental degeneracy and a corresponding non-Abelian dynamical symmetry 
group will occur if at least one more operator exists, commuting with H, but not with 
both XI and X 2 .  The requirement that a further pair, say { Yl , Y2}, of second-order 
operators satisfying (3 )  should exist implies that V ( x )  allows the separation of variables 
in at least two coordinate systems. 

Thus, demanding separability in more than one coordinate system, it is possible 
to generate a class of potentials with ‘redundant’ sets of quadratic integrals of motion 

[XI , X2l= 0 [ X , ,  HI = 0 a = 1 , 2  
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(redundant in the sense that there are more integrals than degrees of freedom). The 
point is to find physically interesting ones inside this class of potentials. 

It turns out that the Hartmann potential belongs to this class. Indeed, any potential 
of the form (Makarov et a1 1967) 

a  COS^ h(cp) V (  r )  = -+ p -+- 
r r’ sin’ e r2 sin2 e ( 4 )  

will allow the separation of variables in both spherical coordinates (cf Landau and 
Lifshitz 1960) 

x = r sin 0 cos cp ( 5 )  

x = (ab)”’ cos q y = ( ab)”2 sin cp z = ; ( a  - b) .  ( 6 )  

y = r sin 0 sin cp z = r cos 0 

and parabolic rotational coordinates 

(In ( 4 ) ,  a and p are constants and h is an arbitrary function of cp.) The corresponding 
integrals of motion are also known, namely for the coordinates ( r ,  8, cp) 

COS e 1 
sin’ e sin e X I  = L:+ L:+ L ? - 2 p - -  2 .z h(cp) 

X2 = L: - 2 h ( (c) 
( 7 )  

and for the coordinates (a ,  b, cp) 

a - b  a 2 + b 2  a - b  
ab YI = LlP’+P,LI- L2Pl -P1L2 - 2  “ , + b + P  ab(a  + b )  

(8) 
Y z = L : - 2 h ( c p ) = X 2 .  

The translations pi and rotations Li in ( 7 )  and (8) form a basis for the Euclidean 
Lie algebra e(3). Our conventions are 

d 

ax 
p i  =7 Li = -&.. uk .JPk x l = x  x 2 =  y x 3 = z  ( 9 )  

and hence 

I L ! ,  L,l = & y k L k  L L i ,  P , ] = & y k P k  [PU P , l =  0. ( 
The pairs { X , ,  X 2 }  and { Y l ,  Y2}  correspond to the separation of variables 

( 

spherical and parabolic coordinates, respectively, and we have 

[Xl , X2l = [ Yl 9 Yzl = 0 [ X I ,  YIl+ 0. 
The case of the Hartmann potential is obtained by putting 

0) 
in 

p = 0  h = fqv2u2 ( 1 2 )  
2 a =-TU 

in equations ( 4 ) ,  ( 7 )  and ( 8 ) .  The operator X z =  Y2 can then be replaced by L:, 
dropping the constant h. 

In 0 2, we solve the quantum mechanical Hartmann problem making use of the KS 

transformation, on the one hand, and of the integrals of motion (8) in parabolic 
coordinates, on the other. The dynamical symmetry algebra explaining the accidental 
degeneracy is found to be isomorphic to su(2) and investigated in § 3. The classical 
equations of motion for the Hartmann potential are solved in P 4. It is shown that all 
orbits that are finite are also periodic, a property shared with other Hamiltonian systems 
having dynamical symmetry groups. Finally, the conclusions and possible applications 
are discussed in § 5 .  
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2. Energy levels and wavefunctions 

2.1. K S  transformation and parabolic coordinates 

The KS transformation (Kustaanheimo and Stiefel 1965) may be defined through the 
mapping R4 (coordinates ul, u 2 ,  u 3 ,  u4)+R3 (coordinates x, y,  z )  

x = 2( u,u3 - ~ 2 ~ 4 )  y = 2(u1u4+u2u3) (13) 

accompanied by the constraint 

z = U :  + u:- U : -  U: 

1.42 du1- U I  du2- ~4 du3+ ~3 d ~ 4 = 0 .  (14) 

This transformation has received considerable attention in the recent years and the 
reader is referred to the paper by Lambert and Kibler (1986) for an exhaustive 
bibliography. Let us just mention that such a transformation is connected to the theory 
of spinors (Kustaanheimo and Stiefel 1965) and, therefore, to the algebra of the usual 
quaternions (Kibler and Nigadi 1984c, Cornish 1984, Lambert et a1 1986) and may 
be obtained as a particular case of the so-called Hurwitz transformations (Lambert 
and Kibler 1986, 1987). The KS transformation allows us to write the Laplacian A3 in 

as 

1 1 
A3 =- A4-- X 2  

4r 4r2 

r = ( x 2 + y 2 +  z * ) * ’ ~  = U:+ U:+ U:+ U: 

in terms of the Laplacian A, in R4 and of the vector field 

a a a a x = U 2  -- U1 -- U4 -+ U 3  - 
au,  au, au3 au, 

which vanishes when acting on functions G(x, y ,  z )  of class C’ (Kibler and Nigadi 
1984d). 

A useful link between spherical, parabolic and KS coordinates is given by 

r =: (a  + b )  = p i +  p i  r2 sin2 8 = ab = 4p:p:  

a = r ( l  +cos e )  = 2 p :  

Q = Qi + 402 + 2 k ~  

b = r ( l  -cos e )  = 2p:  

( k  E E) 
(17) 

where 

U1 = P I  cos (01  u2 = p 1  sin (ol U 3  = P2 COS Q2 u4 = p2 sin q2.  (18) 

2.2. Bound states 

The Schrodinger equation for V, of (1) is in au 

The KS transformation allows us to convert (19) into the Schrodinger equation for an 
R4 isotropic non-harmonic oscillator with an inverse squared potential and subjected 
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to a constraint condition. The latter Schrodinger equation and the constraint condition 
in turn yield the system (Kibler and NCgadi 1984b) 

V2)f (20a) 

1 a2g a2g 1 

af 
au2 a u l  au, 4 a ~ 3  

- - 2 (- aut + -) au’, + ( -4 Ep: + 4477 2 ~ 2  -i) P2 g = 2( K + vu2) 

ag ag img u 3 - - u  -= u1 -- u2 a f  = imf 

where K and m are separation constants while f ( u1 , u 2 )  and g( u3,  U,) are such that 
+ = fg. Single-valued solutions of equations (20) are obtained in the form 

f = 4 p l )  exp(imlcpJ g = W(P2) exp(im2cp2) (21) 

m1 = m2= m EZ.  (22) 

where, owing to ( ~ O C ) ,  we have 

Furthermore, (20a) reduces to the following differential equation: 

where 

M 2  = m 2 +  qv2u2. 

Relation (20b) gives a differential equation similar to (23). The two differential 
equations so obtained may be readily solved in terms of the confluent hypergeometric 
function The resulting function t,b = exp(imcp)u(p,)w(p,) may be completely 
written in parabolic coordinates due to (17) and (22). This leads to a function t,b of 
ay b and cp which must belong to L2(R3). The condition for +(a, by c p )  to be square 
integrable implies that E = EN is quantised according to 

N = /MI+ n , +  n2+ 1 n l e N  n 2 e N  

(MI = (m2+qv2u2)1/2 m e h  

a result already obtained in this form (Kibler and NCgadi 1984b). Finally, the 
normalised wavefunction t,b 3 is given by (up to a phase factor) 

which compares with the expression derived by Gerry (1986) in ‘squared’ parabolic 
coordinates (our result differs from the one of Gerry (1986) by a factor N - ’ / * ) .  
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It is to be observed that the wavefunctions and eigenvalues obtained in P 2.2 yield, 
in the particular case for which q = 0 and 7u2 = 2, well known results for a hydrogen-like 
atom of atomic number Z. In this limiting case, M and N must be replaced by the 
azimuthal (m) and principal ( n )  quantum numbers, respectively, and the non-negative 
integers n, and n2 (or n, and n: in the notation of Kibler and NCgadi (1984a)) coincide 
with the usual parabolic quantum numbers. 

2.3. Relation to a set of commuting operators 

According to the general philosophy of the group theoretical approach to variable 
separation (Winternitz and FriS 1965, Miller 1977, Miller et al1981), the wavefunctions 

that are separated in parabolic rotational coordinates should be the common 
eigenfunctions of a complete set of commuting second-order operators. This set is 
{ H, Yl , Y2}, where H is the Hamiltonian occurring in (19) and Yl and Y2 follow from 
( 8 )  by taking (12) into account. More precisely, in parabolic coordinates we obtain 

1 1 2 2 1  +-q7 U - 
2ab acp a + b  2 ab 

2- H = - & [ $ ( a ~ ) + ~ ( b - $ ] - - ~ - 2 r y ~  1 a’ 

y1=-4- -- 
a?b(a f2  a:’) a : b ( b $ - a $ )  

a - b  a2 a - b  a - b  
ab av2 a + b  ab 

i-- -+27u2-- q72a2 - 

a2 y --- 
2- 2 4 :  acp 

(we drop the constant -qT2u2 in the definition of Y2). As a matter of fact, we have 

H$EKm = E$EKm Y l $ E K m  = ( - ~ K ) $ ’ E K ~  L:$EKm = - m 2 $ E K m  (28) 
where ( L E K , , ,  coincides with and E with E N .  The eigenvalues of the operator 
Y,  are nothing but (up to the factor -2) the possible values of the separation constant 
K of (20a) and (20b). The square integrability of the wavefunction of equation 
(26) requires that (1,2 = +, -) 

= -- 

be two non-negative integers and this is only possible if the constant K satisfies 

IKI < 7u2. (30) 

2.4. Discussion of degeneracies 

The energy levels as given by (25) are obviously degenerate. For N and m fixed, the 
degree of degeneracy 

d(N, m ) =  N-IMI (31) 
is the same as for a two-dimensional isotropic harmonic oscillator. Observe that for 
N and Iml fixed, the degree of degeneracy d(N, m )  should be replaced by 

(32) d’(N, 14) = [2- S ( m ,  0)l d(N, m )  
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in view of the two possibilities for the angular momentum component m. In this 
regqrd, we note that confusion between d‘( N, Iml) and d(  N, m )  exists in some previous 
works (Hartmann and Schuch 1980, Kibler and N6gadi 1984b). However, the basic 
degeneracy to be understood corresponds, in the final analysis, to equation (31). This 
degeneracy is explained by the existence of a dynamical invariance algebra of type 
su(2), to be discussed below. 

Finally, let us mention that truly accidental degeneracies may exist for some specific 
energy levels if the parameters q, 7 and U of the Hartmann potential satisfy a particular 
relation. To be specific, the energy levels associated to the triplets ( m ,  n, ,  n2) and 
(m’, n:, n;) with m’Z m are degenerate if 

1 
I 

4 q ~ 2 a 2 = , [ ~ 2 - ( m + m ’ ) 2 ] [ ~ 2 - ( m - m ’ ) 2 ]  (33) 

where the integer I = n{ + n; - n ,  - n, is different from zero for m’# m. We shall not 
deal with this kind of degeneracy here. 

3. Dynamical invariance algebra 

To simplify notation we put 

z1= Ea z2 = Eb (34) 

+n,n,m(a, b, P) = N”,nzmHn,M(z,)Hn,,(z,) e x ~ ( i m ~ )  (35) 

H ~ , ~ ( z ~ )  = e ~ p ( - z ~ / 2 ) z ~ ~ ” ~ , ~ ~ ( - n , ;  I M I  + 1; zi) i = l , 2 .  (36) 

and rewrite the obtained bound state wavefunctions (26) as 

where 

Using the recursion relations for the confluent hypergeometric series (Gradshteyn 
and Ryzhik 1980) we construct raising and lowering operators for the wavefunctions 

As a result, the operators 

a M~ 1 zi a’ 
azf azi 4zi 2 4 

i = 1 , 2  b?=Tzi-+(ziT1)-*-+-T- 

act on +,,,,,, in the following manner: 

(37) 

The operators b: ( i  = 1,2) change the energy E N  (by one unit in N = [MI+ n, + n 2 +  
1). The four bilinear forms bTb,; ( i  and j = 1,2), on the other hand, will commute 
with the Hamiltonian H and hence leave invariant the subspace associated with E N .  
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Directly from (38) we obtain 

and we see that the operators 

N,=t([b:, by]-[MI-1) i = 1 , 2  (40) 

Nt$n,n,m = ni$n,nzm i = l , 2 .  (41) 

play the role of ‘number of quanta’ operators since 

The invariants NI (i  = 1,2) are two operators of second order (in the derivatives). Two 
further invariants are b;b: and b:b;, which may be seen to be of fourth order. Applied 
to the wavefunction $n,n,m, they change its normalisation. To compensate for this we 
make use of the number operators (40) and construct the triplet of operators 

In general, the introduction in (42) of the negative square roots of operators may pose 
mathematical problems. We shall, however, only apply the operators J3 and J ,  on a 
subspace of eigenfunctions associated to given values of the energy EN and the angular 
momentum projection m. Then, the operators Ni ( i  = 1,2) are just non-negative 
numbers and we have 

Equations (43) are the canonical relations for the SU(2) infinitesimal generators and 
they provide a representation of su(2) with angular momentum j = ;( n, + n2) and third 
component m, =$(n2-  n,). The commutation relations of J3 and J ,  (when applied to 
$,,,,,, with n, + n2 and m fixed) are clearly the appropriate ones, viz [ J + ,  J-3 = 23, and 
[ J 3 , J + I = * J * .  

The next step is to relate the invariants Ni ( i  = 1 ,2 )  to the Hamiltonian H and the 
integral of motion Y, . Writing Y,  , H, N, and N2 in parabolic coordinates, we prove 
that 

(44) Y1= (-2E)’/’([ b:, by] - [ b:, b;]). 
From (39a) we obtain an expression for the Hamiltonian H which can be combined 
with (44). Finally, we are left with 

as far as H and Y,  act on a subspace associated to given values of N and m. The 
relation between the energy E N  and the separation constant K ,  on the one hand, and 
the numbers of quanta ni ( i  = 1,2), on the other, is directly deducible from (39) and 
(45). We thus obtain 
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At this point, we may establish contact with the KS treatment of 0 2. It can be 
shown that 

[ b:, b ; ]  = ; ( -2E)-”’h ,  i = l , 2  ( 4 7 )  

where 

1 
+ f q T 2 a 2  - 

u:+ U :  

are the two Hamiltonians occurring in the Schrodinger equations ( 2 0 a )  and ( 2 0 b )  for 
the two coupled isotropic non-harmonic oscillators. 

The considerations of 0 3 are based on the use of the wavefunctions separated in 
parabolic coordinates. Thus the operator Yl plays a privileged role. An equivalent 
realisation of the dynamical invariance algebra su(2) could be obtained in spherical 
coordinates. The corresponding raising and lowering operators would then be related 
to the operator X1 of ( 7 )  and ( 1 2 )  (and, of course, to the Hamiltonian H )  but the 
connection with the KS treatment would yield relations less simple than ( 4 7 ) .  

4. Classical equations of motion 

The Hamilton-Jacobi equation for the Hartmann potential allows the separation of 
variables in spherical and parabolic coordinates. The (classical) Hamilton function 
H,, for V, is in parabolic coordinates 

2 1 1 1 
H,, = - (up:  + b p i )  +- p’, - 2 7 a 2  - + ;q$u2 2 (49) a + b  2ab a + b  

where p a ,  P b  and pv are the classical momenta, canonically conjugated to a,  b and cp, 
respectively. Since H,, is time independent and cp is a cyclical variable, and since we 
know that the Hamilton-Jacobi equation separates, we shall look for the action S in 
the form 

S = So( a, b, cp ) - Et = SI ( a  ) + S2( b ) + mcp - Et (50)  

where we have put 

( 5 1 )  po = m = constant. 

The Hamilton-Jacobi equation then becomes 

[ a  ( $)2 + b ($)’I +L (s)’ - 2 T a 2  -+t4772u2 1 - 1 = E, 
a + b  2ab acp a + b  ab  

Using (50) we obtain two ordinary first-order differential equations 

(53) 
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where K is a separation constant and M 2  = m 2 +  qv2a2 as in 0 3 (except, of course, 
that m and K are not quantised). The solutions to (53) can be written as 

where (1,2 = -, +) 

51,2=(-2E)-1{7~2-  K T [ ( - K  + ~ ( T ~ ) ~ + ~ M ~ E ] ’ ’ ~ }  

71,~ = (-LE)-’{ 7a2 + K 
( 5 5 )  

[ ( K  + 7 ~ ~ ) ~  + 2M2E]’/’). 

The case of bounded motion corresponds to 

- ( F K + ~ u ~ ) ~ / ~ M ~ S  E<O IK I < vu2 (56 )  

(57) 

The integrals in equation (54) can easily be evaluated. However, it is better to write 
the equations of motion directly by putting 

and restricting ourselves to this case we have 

o <  t1 s a s  5 2  0 < 7, S b S q 2 .  

aS as as 
,,=h 

g = P 2  am - = P 3  

with pi = constant ( i  = 1,2,3).  The equations so obtained yield integrals which can be 
calculated and after some manipulation we obtain that the trajectories in parabolic 
coordinates are given by 

2a - 51 - 5 2  

5 2  - 51 

(59c) 

The left-hand sides of (59b) and ( 5 9 c )  are seen to be constants of motion. The time 
dependence is in ( 5 9 ~ ) .  Note that the variables a ( t )  and b ( t )  in formulae (59a)  and 
(59b) can be separated and we obtain the transcendental equation 

5 2 - 5 1  a 5 2 - 5 1  

{-(52-51)-(72- 71) c0s[2(-2z5)1”P211 cos p 

+ ( 7 2 - 7 1 )  sin[2(-2E)’12P21 sinp+(51+52+71+72)p 

=4(-2E)’”(P1 t)-2(-2E)’”P2(7)1 7 2 )  (60) 
giving p as a function of time, where 

2a - 51 - 5 2  

5 2 - 5 1  ’ 

sin p = 
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The final result that we wish to stress is that all the trajectories described by 
(59a, b, c), i.e. all the finite trajectories, are periodic. To prove this, use (596) to 
eliminate sin-' [(2b - 77' - ~ ~ ) / ( 7 7 ~ -  T ~ ) ]  from (59a), evaluate the obtained expression 
for the times t and ?+ T and subtract the two expressions. The requirement 

a ( t + T ) = a ( t )  b( t + T) = b( t )  (63) 
implies that 

T = 2 ~ 7 7 ~ ~ ( - 2 E ) - ' / ~  

is the period of the motion (remember that p = 1). 

5. Concluding remarks 

The present paper complements earlier quantum mechanical studies of the Hartmann 
potential in spherical coordinates (Hartmann 1972a), KS coordinates (Kibler and 
NCgadi 1984a) and parabolic coordinates (Gerry 1986). The KS approach developed 
in 0 2 completes the endeavour undertaken by Kibler and Nigadi (1984a) and con- 
stitutes an alternative to the treatment in squared parabolic coordinates given by Gerry 
(1986). The dynamical invariance algebra and the classical equations of motion for 
the Hartmann system are, to our knowledge, treated for the first time in this paper. 

Several possible applications and open problems should be mentioned. The 
Hartmann potential takes its origin in the quantum chemistry of ring-shaped molecules. 
The fact that the corresponding Hamiltonian admits a dynamical invariance group 
should be useful in the calculation of quantities other than energy levels. We have in 
mind objects of physicochemical interest, such as various transition matrix elements. 

An important property that the Hartmann system shares with other systems that 
exhibit accidental degeneracy of quantum levels is the periodicity of all finite classical 
trajectories. We recall that in three space dimensions the only spherically symmetric 
potentials with this property are, according to Bertrand's (1873) famous theorem, the 
Newton potential 1/ r and the harmonic oscillator potential r2. A question of practical 
interest is whether the periodicity of finite orbits in the Hartmann potential field can 
be put to good use. More specifically, could an electrostatic system, creating a 
ring-shaped potential of the form (l) ,  be employed to confine charged particles in a 
stable manner? The set of periodic trajectories for the Hartmann potential is clearly 
stable with respect to perturbations of the initial conditions. Stability with respect to 
interactions between different particles or aggregates of particles, moving in such a 
potential, remains to be investigated. 

An open conceptual question is related to the dynamical invariance group of the 
Hartmann Hamiltonian and similar systems having more integrals of motion than 
degrees of freedom. The three second-order operators X1,  X 2  and Yl of equations 
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(7)-( 11) generate an infinite-dimensional Lie algebra since the commutators [ X , ,  Y,], 
[XI, [ X , ,  Y l ] ] ,  [ Y 1 ,  [XI , Y l ] ] ,  etc, are all linearly independent. It would be interesting 
to determine the structure of this Lie algebra and its relation to well understood 
infinite-dimensional Lie algebras, such as Kac-Moody or loop algebras (Kac 1984). 
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